

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Using Python in Tableau Calculations

	Configuration

	Tableau Desktop

	Tableau Server 2020.2 and Newer Versions

	Tableau Server 2020.1 and older

	Tableau Server 2018.2 and 2018.3

	Tableau Server 2018.1 and Older Versions

	Anatomy of a Python Calculation

	Using Deployed Functions

Configuration

Once you have a TabPy instance set up you can easily
configure Tableau to use this service for evaluating Python code.

Tableau Desktop

To configure Tableau Desktop version 10.1 or later to connect to TabPy server
follow steps at Tableau
Configure an Analytics Extension connection [https://help.tableau.com/current/pro/desktop/en-us/r_connection_manage.htm#configure-an-external-service-connection]
documentation page.

Tableau Server 2020.2 and Newer Versions

Starting from Tableau Server 2020.2 analytics extensions connections
are configured on site level as shown of
Configure Connections to Analytics Extensions [https://help.tableau.com/current/server/en-us/config_r_tabpy.htm]
page.

Tableau Server 2020.1 and older

For older Tableau Server versions refer to version specific documentation:

	2020.1 [https://help.tableau.com/v2020.1/server/en-us/config_r_tabpy.htm].

	2019.4 [https://help.tableau.com/v2019.4/server/en-us/config_r_tabpy.htm].

	2019.3 [https://help.tableau.com/v2019.3/server/en-us/cli_security_tsm.htm#tsm_security_vizql-extsvc-ssl-enable].

	2019.2 [https://help.tableau.com/v2019.2/server/en-us/cli_security_tsm.htm#tsm_security_vizql-extsvc-ssl-enable].

	2019.1 [https://help.tableau.com/v2019.1/server/en-us/cli_security_tsm.htm#tsm_security_vizql-extsvc-ssl-enable].

Tableau Server 2018.2 and 2018.3

To configure Tableau Server 2018.2 and newer versions to connect to TabPy server
follow instructions on Tableau
Configure Connections to Analytics Extensions [https://onlinehelp.tableau.com/current/server/en-us/tsm.htm]
page.

Specific details about how to configure a secure connection to TabPy, enable or
disable connections and other setting can be found at Tableau
TSM Security documentation [https://onlinehelp.tableau.com/current/server/en-us/cli_security_tsm.htm#tsm_security_vizql-extsvc-ssl-enable]
page.

For how to configure TabPy instance follow instructions at
TabPy Server Config documentation.

Tableau Server 2018.1 and Older Versions

For Tableau workbooks with embedded Python code to work on Tableau Server 10.1
or later, you need to go through a similar setup but using the
tabadmin [https://onlinehelp.tableau.com/current/server/en-us/tabadmin.htm]
command line utility. The two server settings that need to be configured are
vizqlserver.extsvc.host and vizqlserver.extsvc.port.

tabadmin stop
tabadmin set vizqlserver.extsvc.host <ip address or host name for TabPy>
tabadmin set vizqlserver.extsvc.port <port for TabPy>
tabadmin configure
tabadmin start

Note that you cannot use TabPy secure connection with 2018.1 and older versions
of Tableau.

Note that it is not necessary to install TabPy on the Tableau Server or Desktop
computer-all that is required is a pointer to a TabPy server instance.

Once you’re done with configuration, you can use Python in calculated fields in
Tableau.

Anatomy of a Python Calculation

Tableau can pass code to TabPy through four different functions: SCRIPT_INT,
SCRIPT_REAL, SCRIPT_STR and SCRIPT_BOOL to accommodate the different return
types. In the example below you can see a simple function that passes a column
of book names (highlighted in blue) to Python for proper casing. Since Python
returns an array of string, SCRIPT_STR function is used.

[image: _images/Example1-SimpleFunctionCall.png]A simple example of a Python calculated field in Tableau Desktop

For a SCRIPT call to Python to be successful, it needs to return a result
explicitly specified with the return keyword (highlighted in red).

In this simple example, there is only one input but you can pass as many
arguments to SCRIPT functions as you like. Tableau takes the arguments in the
order provided and replaces the _argN placeholders accordingly. In this case
ATTR([Book Name]) maps to _arg1 and both are highlighted to indicate the
association.

Tableau expects the SCRIPT to return a single column that has either a single
row or the same number of rows as it passed to TabPy. The example above sends
18 rows of data to TabPy and receives 18 rows back.

In the example below Tableau passes multiple columns to TabPy and gets a single
value (correlation coefficient) back. SUM(Sales) and SUM(Profit) are used as
argument 1 and 2 respectively and highlighted in matching colors.
In this case the function corrcoef returns a matrix from which the correlation
coefficient is extracted such that a single column is returned.

[image: _images/Example2-MultipleFunctionCalls.png]Using Partitioning settings with calculations

Tableau aggregates the data before sending to TabPy using the level of detail
of the view. In this particular example each point in the scatter plot is a
Customer and TabPy is receiving SUM(Sales) and SUM(Profit) for each Customer.

If you would like to run your Python code on disaggregate data, you can achieve
this simply by unchecking the Aggregate Measures option under the Analysis menu.

The example above showcases another capability that can come in handy if you
like to run the same Python script multiple times in different contexts. In this
particular example, unchecking the Category and Segment boxes in the Table
Calculation dialog results in Tableau making multiple calls to TabPy, once per
each pane in the visualization.
Running regression analysis independently for each Segment-Category combination.

In all of these examples the data structure being returned by the function can
be consumed by Tableau. This may not always be the case. If your Python code
returns a one dimensional array but TabPy is failing to serialize it to JSON,
you may want to convert it to a list as shown in the example below.

[image: _images/python-calculated-field.png]Converting to list to make the results JSON serializable

You can find two detailed working examples with downloadable sample Tableau
workbooks on our blog [https://www.tableau.com/about/blog/2017/1/building-advanced-analytics-applications-tabpy-64916].

Using Deployed Functions

TabPy Tools documentation covers in detail how functions
could be deployed as endpoints.
You can invoke such endpoints using tabpy.query option by specifying the
endpoint name and arguments and retrieving the response object.

A SCRIPT calculated field in Tableau using the
add endpoint defined in
TabPy Tools documentation could look like the following:

SCRIPT_REAL("
return tabpy.query('add',_arg1,_arg2)['response']",
-SUM([Discount]),SUM([Price]))

You can find a detailed working example with a downloadable sample Tableau
workbook showing how to publish models and use the published models in
calculated fields on
our blog [https://www.tableau.com/about/blog/2017/1/building-advanced-analytics-applications-tabpy-64916].

About TabPy

TabPy framework allows Tableau to remotely execute Python code. It has two components:

	A process built on Tornado, which allows for the remote execution of Python
code through a set of REST APIs. The code can either be immediately
executed or persisted in the server process and exposed as a REST endpoint,
to be called later.

	A tools library,
based on Python functions which enables the deployment of such endpoints.

Tableau can connect to the TabPy server to execute Python code on the fly and
display results in Tableau visualizations. Users can control data and parameters
being sent to TabPy by interacting with their Tableau worksheets, dashboard or stories.

For how to configure Tableau to connect to TabPy server follow steps in
Tableau Configuration Document.

Deploying TabPy to your Heroku account

To deploy TabPy from master branch to a Heroku account:

	Log in to Heroku with your account via a browser.
If you don’t have an account, create one.

	Click the “Deploy to Heroku” button in the Readme.

	Configure the new TabPy server by setting environment
variables through Heroku’s web console or API.

	TabPy will run on the default secure port 443.

TabPy Security Considerations

If security is a significant concern within your organization,
you may want to consider the following as you use TabPy:

	The REST server and Python execution share the same Python session,
meaning that HTTP requests and user scripts are evaluated in the
same addressable memory and processor threads.

	The tabpy.tabpy_tools client does not perform client-side validation of the
SSL certificate on TabPy Server.

	Python scripts can contain code which can harm security on the server
where the TabPy is running. For example, Python scripts can:

	Access the file system (read/write).

	Install new Python packages which can contain binary code.

	Execute operating system commands.

	Open network connections to other servers and download files.

	Execution of ad-hoc Python scripts can be disabled by turning off the
/evaluate endpoint. To disable /evaluate endpoint, set “TABPY_EVALUATE_ENABLE”
to false in config file.

	Always use the most up-to-date version of Python.
TabPy relies on Tornado and if older verions of Python are used with Tornado
then malicious users can potentially poison Python server web caches
with parameter cloaking.

TabPy Server Configuration Instructions

	Custom Settings

	Configuration File Content

	Configuration File Example

	Configuring HTTP vs HTTPS

	Configuring TPS

	Authentication

	Enabling Authentication

	Password File

	Adding an Account

	Updating an Account

	Deleting an Account

	Logging

	Request Context Logging

Custom Settings

TabPy starts with set of default settings unless settings are provided via
environment variables or with a config file.

Configuration parameters can be updated with:

	Adding environment variables - set the environment variable as required by
your Operating System. When creating environment variables, use the same
name for your environment variable as specified in the config file.

	Specifying a parameter in a config file (environment variable value overwrites
configuration setting).

Configuration file with custom settings is specified as a command line parameter:

tabpy --config=path/to/my/config/file.conf

The default config file is provided to show you the default values but does not
need to be present to run TabPy.

Configuration File Content

Configuration file consists of settings for TabPy itself and Python logger
settings. You should only set parameters if you need different values than
the defaults.

Environment variables can be used in the config file. Any instances of
%(ENV_VAR)s will be replaced by the value of the environment variable ENV_VAR.

TabPy parameters explained below, the logger documentation can be found
at logging.config documentation page [https://docs.python.org/3.6/library/logging.config.html].

[TabPy] parameters:

	TABPY_PORT - port for TabPy to listen on. Default value - 9004.

	TABPY_QUERY_OBJECT_PATH - query objects location. Used with models, see
TabPy Tools documentation for details. Default value -
/tmp/query_objects.

	TABPY_STATE_PATH - state folder location (absolute path) for Tornado web
server. Default value - tabpy/tabpy_server subfolder in TabPy package
folder.

	TABPY_STATIC_PATH - absolute path for location of static files (index.html
page) for TabPy instance. Default value - tabpy/tabpy_server/static
subfolder in TabPy package folder.

	TABPY_PWD_FILE - absolute path to password file. Setting up this parameter
makes TabPy require credentials with HTTP(S) requests. More details about
authentication can be found in Authentication
section. Default value - not set.

	TABPY_TRANSFER_PROTOCOL - transfer protocol. Default value - http. If
set to https two additional parameters have to be specified:
TABPY_CERTIFICATE_FILE and TABPY_KEY_FILE.
Details are in the Configuring HTTP vs HTTPS
section.

	TABPY_CERTIFICATE_FILE - absolute path to the certificate file to run
TabPy with. Only used with TABPY_TRANSFER_PROTOCOL set to https.
Default value - not set.

	TABPY_KEY_FILE - absolute path to private key file to run TabPy with.
Only used with TABPY_TRANSFER_PROTOCOL set to https. Default value -
not set.

	TABPY_LOG_DETAILS - when set to true additional call information
(caller IP, URL, client info, etc.) is logged. Default value - false.

	TABPY_MAX_REQUEST_SIZE_MB - maximal request size supported by TabPy server
in Megabytes. All requests of exceeding size are rejected. Default value is
100 Mb.

	TABPY_EVALUATE_ENABLE - enable evaluate api to execute ad-hoc Python scripts
Default value - true.

	TABPY_EVALUATE_TIMEOUT - script evaluation timeout in seconds. Default
value - 30. This timeout does not apply when evaluating models either
through the /query method, or using the tabpy.query(...) syntax with
the /evaluate method.

	TABPY_GZIP_ENABLE - Enable Gzip support for requests. Enabled by default.

	TABPY_ARROW_ENABLE - Enable Arrow connection for data streaming. Default
value is False.

	TABPY_ARROWFLIGHT_PORT - port for
Arrow Flight [https://arrow.apache.org/docs/format/Flight.html]
connection used in streaming mode. Default value is 13622.

Configuration File Example

Note: Always use absolute paths for the configuration paths
settings.

[TabPy]
TABPY_QUERY_OBJECT_PATH = /tmp/query_objects
TABPY_PORT = 9004
TABPY_STATE_PATH = <package-path>/tabpy/tabpy_server

Where static pages live
TABPY_STATIC_PATH = <package-path>/tabpy/tabpy_server/static

For how to configure TabPy authentication read
docs/server-config.md.
TABPY_PWD_FILE = /path/to/password/file.txt

To set up secure TabPy uncomment and modify the following lines.
Note only PEM-encoded x509 certificates are supported.
TABPY_TRANSFER_PROTOCOL = https
TABPY_CERTIFICATE_FILE = /path/to/certificate/file.crt
TABPY_KEY_FILE = /path/to/key/file.key

Log additional request details including caller IP, full URL, client
end user info if provided.
TABPY_LOG_DETAILS = true

Limit request size (in Mb) - any request which size exceeds
specified amount will be rejected by TabPy.
Default value is 100 Mb.
TABPY_MAX_REQUEST_SIZE_MB = 100

Enable evaluate api to execute ad-hoc Python scripts
Enabled by default. Disabling it will result in 404 error.
TABPY_EVALUATE_ENABLE = true

Configure how long a custom script provided to the /evaluate method
will run before throwing a TimeoutError.
The value should be a float representing the timeout time in seconds.
TABPY_EVALUATE_TIMEOUT = 30

Configure TabPy to support streaming data via Arrow Flight.
This will cause an Arrow Flight server start up. The Arrow
Flight port defaults to 13622 if not set here.
TABPY_ARROW_ENABLE = True
TABPY_ARROWFLIGHT_PORT = 13622

[loggers]
keys=root

[handlers]
keys=rootHandler,rotatingFileHandler

[formatters]
keys=rootFormatter

[logger_root]
level=DEBUG
handlers=rootHandler,rotatingFileHandler
qualname=root
propagete=0

[handler_rootHandler]
class=StreamHandler
level=DEBUG
formatter=rootFormatter
args=(sys.stdout,)

[handler_rotatingFileHandler]
class=handlers.RotatingFileHandler
level=DEBUG
formatter=rootFormatter
args=('tabpy_log.log', 'a', 1000000, 5)

[formatter_rootFormatter]
format=%(asctime)s [%(levelname)s] (%(filename)s:%(module)s:%(lineno)d): %(message)s
datefmt=%Y-%m-%d,%H:%M:%S

Configuring HTTP vs HTTPS

By default, TabPy serves only HTTP requests. TabPy can be configured to serve
only HTTPS requests by setting the following parameter in the config file:

TABPY_TRANSFER_PROTOCOL = https

If HTTPS is selected, the absolute paths to the cert and key file need to be
specified in your config file using the following parameters:

TABPY_CERTIFICATE_FILE = C:/path/to/cert/file.crt
TABPY_KEY_FILE = C:/path/to/key/file.key

Note that only PEM-encoded x509 certificates are supported for the secure
connection scenario.

Authentication

TabPy supports basic access authentication (see
https://en.wikipedia.org/wiki/Basic_access_authentication
for more details).

Enabling Authentication

To enable the feature specify the TABPY_PWD_FILE parameter in the
TabPy configuration file with a fully qualified name:

TABPY_PWD_FILE = c:\path\to\password\file.txt

Password File

Password file is a text file containing usernames and hashed passwords
per line separated by single space. For username only ASCII characters
are supported. Usernames are case-insensitive.

Passwords in the password file are hashed with PBKDF2.

It is highly recommended to restrict access to the password file
with hosting OS mechanisms. Ideally the file should only be accessible
for reading with the account under which TabPy runs and TabPy admin account.

There is a tabpy-user command provided with tabpy package to
operate with accounts in the password file. Run tabpy-user -h
to see how to use it.

After making any changes to the password file, TabPy needs to be restarted.

Adding an Account

To add an account run tabpy-user add
command providing user name, password (optional) and password file:

tabpy-user add -u <username> -p <password> -f <pwdfile>

If the (recommended) -p argument is not provided a password for the user name
will be generated and displayed in the command line.

Updating an Account

To update the password for an account run tabpy-user update
command:

tabpy-user update -u <username> -p <password> -f <pwdfile>

If the (recommended) -p agrument is not provided a password for the user name
will be generated and displayed in the command line.

Deleting an Account

To delete an account open password file in any text editor and delete the
line with the user name.

Endpoint Security

All endpoints require authentication if it is enabled for the server.

Arrow Flight

TabPy can be configured to enable Arrow Flight. This will cause a Flight
server to start up alongside the HTTP server and will allow for handling
incoming streamed data in the Arrow columnar format.

As of May 2023, the Arrow Flight feature can only be used by compatible
versions of Tableau Prep. The Arrow Flight feature is not used by Tableau
Desktop, Tableau Server, or Tableau Cloud, regardless of the
TABPY_ARROW_ENABLE setting. In other words, those products will continue
to send the data in a single payload when Arrow Flight is both enabled
and disabled.

To leverage the Flight server, use an existing Flight Client API. There
are implementations available in C++, Java, and Python. To begin streaming
data to the server, a Flight Descriptor (data path) must be generated.
One can be obtained via the TabPy Flight server by using the client to
submit a getUniquePath Action to the server or it can be randomly generated
locally. The client’s do_put interface can then be used to begin sending
data to the server.

Structure the data payload in Arrow format according to the client’s API
requirements. Continue using the client to append the data path with the
data stream.

The mechanism for sending the Python script to the server does not change.

Logging

Logging for TabPy is implemented with Python’s standard logger and can be configured
as explained in Python documentation at
Logging Configuration page [https://docs.python.org/3.6/library/logging.config.html].

A default config provided with TabPy is at
tabpy-server/tabpy_server/common/default.conf
and has a configuration for console and file loggers. Changing the config file
allows the user to modify the log level, format of the logged messages and
add or remove loggers.

Request Context Logging

For extended logging (e.g. for auditing purposes) additional logging can be turned
on with setting TABPY_LOG_DETAILS configuration file parameter to true.

With the feature on additional information is logged for HTTP requests: caller ip,
URL, client infomation (Tableau Desktop\Server), Tableau user name (for Tableau Server)
and TabPy user name as shown in the example below:

2019-05-02,13:50:08 [INFO] (base_handler.py:base_handler:90): Call ID: 934073bd-0d29-46d3-b693-b1e4b1efa9e4, Caller: ::1, Method: POST, Resource: http://localhost:9004/evaluate, Client: Postman for manual testing, Tableau user: ogolovatyi
2019-05-02,13:50:08 [DEBUG] (base_handler.py:base_handler:120): Checking if need to handle authentication, <<
call ID: 934073bd-0d29-46d3-b693-b1e4b1efa9e4>>
2019-05-02,13:50:08 [DEBUG] (base_handler.py:base_handler:120): Handling authentication, <<call ID: 934073bd-
0d29-46d3-b693-b1e4b1efa9e4>>
2019-05-02,13:50:08 [DEBUG] (base_handler.py:base_handler:120): Checking request headers for authentication d
ata, <<call ID: 934073bd-0d29-46d3-b693-b1e4b1efa9e4>>
2019-05-02,13:50:08 [DEBUG] (base_handler.py:base_handler:120): Validating credentials for user name "user1",
 <<call ID: 934073bd-0d29-46d3-b693-b1e4b1efa9e4>>
2019-05-02,13:50:08 [DEBUG] (state.py:state:484): Collecting Access-Control-Allow-Origin from state file...
2019-05-02,13:50:08 [INFO] (base_handler.py:base_handler:120): function to evaluate=def _user_script(tabpy, _
arg1, _arg2):
 res = []
 for i in range(len(_arg1)):
 res.append(_arg1[i] * _arg2[i])
 return res
, <<call ID: 934073bd-0d29-46d3-b693-b1e4b1efa9e4>>

No passwords are logged.

NOTE the request context details are logged with INFO level.

TabPy Installation Instructions

These instructions explain how to install and start up TabPy Server.

	TabPy Installation

	Starting TabPy

TabPy Installation

To install TabPy on to an environment pip needs to be installed and
updated first:

python -m pip install --upgrade pip

Now TabPy can be install as a package:

pip install tabpy

Starting TabPy

To start TabPy with default setting run the following command:

tabpy

To run TabPy with custom settings create config file with parameters
explained in TabPy Server Configuration Instructions
and specify it in command line:

tabpy --config=path/to/my/config/file.conf

It is highly recommended to use Python virtual environment for running TabPy.
Check the Running TabPy in Python Virtual Environment page
for more details.

Starting a Local TabPy Project

To create a version of TabPy that incorporates locally-made changes,
use pip to create a package from your local TabPy project
and install it within that directory (preferably a virtual environment):

pip install -e .

Then start TabPy just like it was mentioned earlier

tabpy

TabPy REST Interface

The server process exposes several REST APIs to get status and to execute
Python code and query deployed methods.

	Authentication, /info and /evaluate

	http:get:: /status

	http:get:: /endpoints

	http:get:: /endpoints/:endpoint

	http:post:: /query/:endpoint

Authentication, /info and /evaluate

Analytics Extensions API v1 is documented at
https://tableau.github.io/analytics-extensions-api/docs/ae_api_ref.html.

The following documentation is for methods not currently used by Tableau.

http:get:: /status

Gets runtime status of deployed endpoints. If no endpoints are deployed in
the server, the returned data is an empty JSON object.

Example request:

GET /status HTTP/1.1
Host: localhost:9004
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"clustering": {
 "status": "LoadSuccessful",
 "last_error": null,
 "version": 1,
 "type": "model"},
 "add": {
 "status": "LoadSuccessful",
 "last_error": null,
 "version": 1,
 "type": "model"}
}

Using curl:

curl -X GET http://localhost:9004/status

http:get:: /endpoints

Gets a list of deployed endpoints and their static information. If no
endpoints are deployed in the server, the returned data is an empty JSON object.

Example request:

GET /endpoints HTTP/1.1
Host: localhost:9004
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"clustering":
 {"description": "",
 "docstring": "-- no docstring found in query function --",
 "creation_time": 1469511182,
 "version": 1,
 "dependencies": [],
 "last_modified_time": 1469511182,
 "type": "model",
 "target": null},
"add": {
 "description": "",
 "docstring": "-- no docstring found in query function --",
 "creation_time": 1469505967,
 "version": 1,
 "dependencies": [],
 "last_modified_time": 1469505967,
 "type": "model",
 "target": null}
}

Using curl:

curl -X GET http://localhost:9004/endpoints

http:get:: /endpoints/:endpoint

Gets the description of a specific deployed endpoint. The endpoint must first
be deployed in the server (see the TabPy Tools documentation).

Example request:

GET /endpoints/add HTTP/1.1
Host: localhost:9004
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"description": "", "docstring": "-- no docstring found in query function --",
 "creation_time": 1469505967, "version": 1, "dependencies": [],
 "last_modified_time": 1469505967, "type": "model", "target": null}

Using curl:

curl -X GET http://localhost:9004/endpoints/add

http:post:: /query/:endpoint

Executes a function at the specified endpoint. The function must first be
deployed (see the TabPy Tools documentation).

This interface expects a JSON body with a data key, specifying the values
for the function, according to its original definition. In the example below,
the function clustering was defined with a signature of two parameters x
and y, expecting arrays of numbers.

Example request:

POST /query/clustering HTTP/1.1
Host: localhost:9004
Accept: application/json

{"data": {
 "x": [6.35, 6.40, 6.65, 8.60, 8.90, 9.00, 9.10],
 "y": [1.95, 1.95, 2.05, 3.05, 3.05, 3.10, 3.15]}}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"model": "clustering", "version": 1, "response": [0, 0, 0, 1, 1, 1, 1],
 "uuid": "46d3df0e-acca-4560-88f1-67c5aedeb1c4"}

Using curl:

curl -X GET http://localhost:9004/query/clustering -d \
'{"data": {"x": [6.35, 6.40, 6.65, 8.60, 8.90, 9.00, 9.10],
 "y": [1.95, 1.95, 2.05, 3.05, 3.05, 3.10, 3.15]}}'

TabPy Tools

TabPy tools is the Python package of tools for managing the published Python functions
on TabPy server.

	Connecting to TabPy

	Authentication

	Deploying a Function

	Predeployed Functions

	Principal Component Analysis (PCA)

	Sentiment Analysis

	T-Test

	ANOVA

	Providing Schema Metadata

	Querying an Endpoint

	Evaluating Arbitrary Python Scripts

	Deploying Models in TabPy Docker Container

Connecting to TabPy

The tools library uses the notion of connecting to a service to avoid having
to specify the service location for all subsequent operations:

from tabpy.tabpy_tools.client import Client

client = Client('http://localhost:9004/')

The URL and port are where the Tableau-Python-Server process has been started -
more info can be found in the
Starting TabPy section of the documentation.

Authentication

When TabPy is configured with the authentication feature on, client code
has to specify the credentials to use during model deployment with the
set_credentials call for a client:

client.set_credentials('username', 'P@ssw0rd')

Credentials only need to be set once for all further client operations.

In cases where credentials are not provided but are required, the deployment will
fail with an “Unauthorized” code (401).

For instructions on how to configure and enable the authentication feature for
TabPy, see TabPy Server Configuration Instructions.

Deploying a Function

A persisted endpoint is backed by a Python method. For example:

def add(x,y):
 import numpy as np
 return np.add(x, y).tolist()

client.deploy('add', add, 'Adds two numbers x and y')

The next example is more complex, using scikit-learn’s clustering API:

def clustering(x, y):
 import numpy as np
 from sklearn.cluster import DBSCAN
 from sklearn.preprocessing import StandardScaler
 X = np.column_stack([x, y])
 X = StandardScaler().fit_transform(X)
 db = DBSCAN(eps=1, min_samples=3).fit(X)
 return db.labels_.tolist()

client.deploy('clustering',
 clustering,
 'Returns cluster Ids for each data point specified by the '
 'pairs in x and y')

In this example the function clustering expects a set of two-dimensional
data points, represented by the list of all x-coordinates and the list of all
y-coordinates. It will return a set of numerical labels corresponding to the
clusters to which each datapoint is assigned. We deploy this function as an
endpoint named clustering.
It is now reachable as a REST API, as
well as through the TabPy tools - for details see the next section.

You can re-deploy a function (for example, after you modified its code) by setting
the override parameter to True:

client.deploy('add', add, 'Adds two numbers x and y', override=True)

Each re-deployment of an endpoint will increment its version number, which is also
returned as part of the query result.

When deploying endpoints which rely on supervised learning models, you may want to
load a saved model instead of training on-the-fly for performance reasons.

Below is an excerpt from the training stage of a hypothetical model that predicts
whether or not a loan will default:

from sklearn.ensemble import GradientBoostingClassifier

predictors = [x for x in train.columns if x not in [target, RowID]]
gbm = GradientBoostingClassifier(learning_rate=0.01, n_estimators=600,max_depth=9,
min_samples_split=1200, min_samples_leaf=60, subsample=0.85, random_state=10)
modelfit(gbm, train, test, predictors)

When the trained model (named gbm in this case) is used in a function being
deployed (as in gbm.predict(...) below), Tableau will automatically save its
definition using cloudpickle along with the definition of the function. The model
will also be kept in memory on the server in order to achieve faster response times.
If you persist your model manually to disk and read as part of your scoring function
code however, you will notice that the response times are noticeably longer - as
every time a client hits an endpoint, the code (including model loading) will get
executed. In order to get the best performance, we recommended following the
methodology outlined in this example.

def LoanDefaultClassifier(Loan_Amount, Loan_Tenure, Monthly_Income, Age):
 import pandas as pd
 data=pd.concat([Loan_Amount,Loan_Tenure,Monthly_Income,Age],axis=1)
 return gbm.predict(data)

client.deploy('WillItDefault',
 LoanDefaultClassifier,
 'Returns whether a loan application is likely to default.')

You can find a detailed working example with a downloadable sample Tableau workbook
and an accompanying Jupyter workbook that walks through model fitting, evaluation
and publishing steps on
our blog [https://www.tableau.com/about/blog/2017/1/building-advanced-analytics-applications-tabpy-64916].

The endpoints that are no longer needed can be removed the following way:

client.remove('WillItDefault')

Predeployed Functions

Deploying Models Shipped With TabPy

To deploy models shipped with TabPy follow the
TabPy Installation Instructions and then
TabPy Server Configuration Instructions.
Once your server is running execute the following command:

tabpy-deploy-models

If your server is running using a custom config specify the config
in the command line:

tabpy-deploy-models custom.conf

The command will deploy all of the prebuilt models.
For every successfully deployed model a message will be printed to the console:

"Successfully deployed PCA"

Use code in tabpy/models/scripts
as an example of how to create a model and
tabpy/models/deploy_models.py
as an example for how to deploy a model. Before executing delpoyment script
install all the required dependencies with pip.

You can deploy models individually by navigating to
tabpy/models/scripts and running
each file in isolation like so:

python PCA.py

Similarly to the setup script, if your server is running using a custom config,
you can specify the config’s file path through the command line.

Principal Component Analysis (PCA)

Principal component analysis [https://en.wikipedia.org/wiki/Principal_component_analysis]
is a statistical technique which extracts new, linearly uncorrelated,
variables out of a dataset which capture the maximum variance in the
data. In this way, PCA can be used to reduce the number of variables
in a high dimensional dataset, a process that is called dimensionality
reduction. The first principal component captures the largest amount of
variance, while the second captures the largest portion of the remaining
variance while remaining orthogonal to the first and so on. This allows the
reduction of the number of dimensions while maintaining as much of the
information from the original data as possible. PCA is useful in
exploratory data analysis because complex linear relationships can be
visualized in a 2D scatter plot of the first few principal components.

TabPy’s implementation of PCA uses the scikit-learn
decomposition.PCA [https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html]
algorithm, which is further documented here [https://scikit-learn.org/stable/modules/decomposition.html#pca].
In the Tableau script, after the function name PCA, you must specify a
principal component to return. This integer input should be > 0 and <= the
number of variables you pass in to the function. When passing categorical
variables we perform the scikit-learn One Hot Encoding [https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html]
to transform your non-numeric variables into a one-hot numeric array of 0s and
1s. In order for One Hot Encoding to be performant we have limited the number
of unique values your categorical column may contain to 25 and do not permit
any nulls or empty strings in the column. In Tableau’s implementation of PCA
is performed, all variables are normalized to have a mean of 0 and unit
variance using the scikit-learn StandardScaler [https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html].

A Tableau calculated field to perform PCA will look like:

tabpy.query(‘PCA’, 1, _arg1, _arg2, _arg3)[‘response’]

Sentiment Analysis

Sentiment analysis [https://en.wikipedia.org/wiki/Sentiment_analysis] is
a technique which uses natural language processing to extract the emotional
positivity or negativity – the sentiment – behind a piece of text and converts
that into a numeric value. Our implementation of sentiment analysis returns a
polarity score between -1 and 1 which rates the positivity of the string with
1 being very positive and -1 being very negative. Calling the Sentiment Analysis function from TabPy in Tableau will look like the following,
where _arg1 is a Tableau dimension containing text

tabpy.query('Sentiment Analysis', _arg1)[‘response’]

Python provides multiple packages that compute sentiment analysis – our implementation
defaults to use NLTK’s sentiment package [https://www.nltk.org/api/nltk.sentiment.html].
If you would like to use TextBlob’s sentiment analysis [https://textblob.readthedocs.io/en/dev/quickstart.html]
algorithm you can do so by specifying the optional argument “library=textblob”
when calling the Sentiment Analysis function through a calculated field in
Tableau

tabpy.query('Sentiment Analysis', _arg1, library='textblob')[‘response’]

T-Test

A t-test [https://en.wikipedia.org/wiki/Student%27s_t-test] is a statistical
hypothesis test that is used to compare two sample means or a sample’s mean against
a known population mean. The ttest should be used when the means of the samples
follows a normal distribution but the variance may not be known.

TabPy’s pre-deployed t-test implementation can be called using the following syntax,

tabpy.query(‘ttest’, _arg1, _arg2)[‘response’]

and is capable of performing two types of t-tests:

	A t-test for the means of two independent samples with equal variance [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html]
This is a two-sided t test with the null hypothesis being that the mean of
sample1 is equal to the mean of sample2:

	_arg1 (list of numeric values): a list of independent observations.

	_arg2 (list of numeric values): a list of independent observations equal to
the length of _arg1.

Alternatively, your data may not be split into separate measures. If that is
the case you can pass the following fields to ttest:

	_arg1 (list of numeric values): a list of independent observations

	_arg2 (list of categorical variables with cardinality two): a binary factor
that maps each observation in _arg1 to either sample1 or sample2 (this list
should be equal to the length of _arg1).

	A t-test for the mean of one group [https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ttest_1samp.html]:

	_arg1 (list of numeric values): a list of independent observations.

	_arg2 (a numeric value): the known population mean
A two-sided t test with the null hypothesis being that the mean of a sample
of independent observations is equal to the given population mean.

The function returns a two-tailed p-value [https://en.wikipedia.org/wiki/P-value]
(between 0 and 1). Depending on your significance level [https://en.wikipedia.org/wiki/Statistical_significance]
you may reject or fail to reject the null hypothesis.

ANOVA

Analysis of variance [https://en.wikipedia.org/wiki/Analysis_of_variance]
helps inform if two or more group means within a sample differ. By measuring
the variation between and among groups and computing the resulting F-statistic
we are able to obtain a p-value. While a statistically significant p-value
will inform you that at least 2 of your groups’ means are different from each
other, it will not tell you which of the two groups differ.

You can call ANOVA from tableau in the following way,

tabpy.query(‘anova’, _arg1, _arg2, _arg3)[‘response’]

Providing Schema Metadata

As soon as you share your deployed functions, you also need to share metadata
about the function. The consumer of an endpoint needs to know the details of how
to use the endpoint, such as:

	The general purpose of the endpoint

	Input parameter names, data types, and their meaning

	Return data type and description

This data goes beyond the single string that we used above when deploying the
function add. You can use an optional parameter to deploy to provide such
a structured description, which can then be retrieved by other users connected
to the same server. The schema is interpreted as a Json Schema [http://json-schema.org/documentation.html]
object, which you can either manually create or generate using a utility
method provided in this tools package:

from tabpy.tabpy_tools.schema import generate_schema

schema = generate_schema(
 input={'x': 3, 'y': 2},
 output=5,
 input_description={'x': 'first value',
 'y': 'second value'},
 output_description='the sum of x and y')

 client.deploy('add', add, 'Adds two numbers x and y', schema=schema)

To describe more complex input, like arrays, you would use the following syntax:

from tabpy.tabpy_tools.schema import generate_schema

schema = generate_schema(
 input={'x': [6.35, 6.40, 6.65, 8.60],
 'y': [1.95, 1.95, 2.05, 3.05]},
 output=[0, 0, 0, 1],
 input_description={'x': 'list of x values',
 'y': 'list of y values'},
 output_description='cluster Ids for each point x, y')

 client.deploy('clustering',
 clustering,
 'Returns cluster Ids for each data point specified by the pairs in x and y',
 schema=schema)

A schema described as such can be retrieved through the REST Endpoints API
or through the get_endpoints client API as follows:

client.get_endpoints()['add']['schema']

Querying an Endpoint

Once a Python function has been deployed to the server process, you can use the
client’s query method to query it (assuming that you’re already connected to the
service):

x = [6.35, 6.40, 6.65, 8.60, 8.90, 9.00, 9.10]
y = [1.95, 1.95, 2.05, 3.05, 3.05, 3.10, 3.15]

client.query('clustering', x, y)

Response:

{
 "model": "clustering",
 "response": [0, 0, 0, 1, 1, 1, 1],
 "uuid": "1ca01e46-733c-4a77-b3da-3ded84dff4cd",
 "version": 2
}

Evaluating Arbitrary Python Scripts

The other core functionality aside from deploying and querying methods as endpoints
is the ad-hoc execution of Python code, called evaluate. Evaluate does not
have a Python API in tabpy-tools, only a raw REST interface
that other client bindings can easily implement. Tableau connects to TabPy
using REST Evaluate.

evaluate allows calling a deployed endpoint from within the Python code block.
The convention for this is to use a provided function call tabpy.query in the
code, which behaves like the query method in tabpy-tools. See the
REST API documentation for an example.

Deploying Models in TabPy Docker Container

To deploy custom models for TabPy running in docker container, first copy all
python model files onto host machine.

For example, myFunction.py is the model we want to deploy.
Run following from the folder containing myFunction.py on host machine

docker cp myFunction.py <container_id>:/app/scripts/myFunction.py
docker exec -it <container_id> python /app/scripts/myFunction.py

Running TabPy in Virtual Environment

Running TabPy in Python Virtual Environment

To run TabPy in Python virtual environment follow the steps:

	Install virtualenv package:

pip install virtualenv

	Create virtual environment (replace my-tabpy-env with
your virtual environment name):

virtualenv my-tabpy-env

	Activate the environment.

	For Windows run

my-tabpy-env\Scripts\activate

	For Linux and Mac run

source my-tabpy-env/bin/activate

	Run TabPy:

	Default TabPy

tabpy

	Local TabPy

To create a version of TabPy that incorporates locally-made changes,
use pip to create a package from your local TabPy project and install
it within that directory:

pip install -e .

Then start TabPy just like it was mentioned earlier

tabpy

	To deactivate virtual environment run:

deactivate

Running TabPy in an Anaconda Virtual Environment

To run TabPy in an Anaconda virtual environment follow the steps:
NOTE: this assumes you have installed Anaconda [https://www.anaconda.com/products/individual]
in a Windows environment

	For Windows open Anaconda Prompt from the Windows Start menu, for
Linux and Mac run shell.

	Navigate to your home directory:

	On Windows run

cd %USERPROFILE%

	For Linux and Mac run

cd ~

	Create the virtual Anaconda environment

conda create --name my-tabpy-env python=3.7

	Activate your virtual environment

conda activate my-tabpy-env

	Install TabPy to your new Anaconda environment by following the instructions
on the TabPy Server Install documentation page.

	Run TabPy:

tabpy

	To deactivate virtual environment run:

conda deactivate

 _images/Example2-MultipleFunctionCalls.png
jii Columns Category SUM(Sales)

$6,000 5)
$4,000)

Profit

$2,000

$0
-$2,000

0.7662

$6,000
$4,000

Corporate
Profit

$2,000

$0

-$2,000
$0 $20,000 $40,000 $0

Pearson Correlation Coefficien

Results are computed along Customer Name.
SCRIPT_REAL("import numpy as np

return np.corrcoef(_argl,_arg2)[0,1]",
SUM([Sales]),SUM([Profit]))

Technology

$20,000 $40,000

X

Table Calculation
Pearson Correlation Coefficient

Compute Using

Table (across)

Table (down)

Table (across then down)
Table (down then across)
Pane (across)

Pane (down)

Pane (across then down)
Pane (down then across)
Cell

Specific Dimensions

Customer Name
Category
Segment

At the level

Restarting every

Sort order Specific Dimensions

_images/python-calculated-field.png
Python sarpt X

Results are computed along Table (across).
SCRIPT_INT("import numpy as np

from sklearn.cluster import DBSCAN

from sklearn.preprocessing import StandardScaler
x= np.column_stack([_argl,_arg2])

X = StandardScaler().fit_transform(x)

b = DBSCAN(eps=0.2, min_samples=i0).fit(X)
return db.labels_.tolist()", SUM([X]),SUM([¥]))

Defauit Table Calaation

_images/Example1-SimpleFunctionCall.png
Pages

Filters

Marks
Automatic v
H & @
Color Size Text
%o 0

Detail Tooltip

Title Cased A

jii Columns
i= Rows

crime and punishment

in search of lost time

one hundred years of solitude
paradise lost

pride and prejudice

the adventures of huckleberry finn
the brothers karamazov

the canterbury tales

the catcher in the rye

the divine comedy

the grapes of wrath

the great gatsby

the scarlet letter

the sound and the fury

to kill a mocking bird

Title Cased

Crime and Punishment
In Search of Lost Time

One Hundred Years of Solitude

Paradise Lost

Pride and Prejudice

The Adventures of Huckleberry Finn

The Brothers Karamazov
The Canterbury Tales
The Catcher in the Rye
The Divine Comedy

The Grapes of Wrath
The Great Gatsby

The Scarlet Letter

The Sound and the Fury
To Kill a Mocking Bird

Results are computed along Book Name.

SCRIPT_STR("from titlecase import titlecase
return map(titlecase,_argl)",ATTR([Book Name]))

Apply

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

